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Abstract

Why do competing platforms or networks exist? This paper focuses on instances where the

value of a platform depends on the adoption decisions of a small number of firms, and ana-

lyzes the strategic competition among platforms to get this oligopolistic side on-board. I study

a bilateral contracting game among platforms and firms that allows for general externalities

across both contracting and non-contracting partners, and examine when a market will sustain

a single or multiple platforms. When firms can join only one platform, I provide conditions

under which market-tipping and/or market-splitting equilibria may exist. In particular, even

without coordination failure, congestion effects, or firm multi-homing, multiple platforms can

sustain in equilibrium despite being inefficient from the perspective of the contracting parties.

Expanding the contracting space to include contingent contracts may exacerbate this inefficiency.
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1 Introduction

Many important economic markets conduct transactions between agents facilitated by a “platform”

or “network.” Examples are numerous, and include technology standards and business exchanges

which enable interactions between firms, as well as markets which allow consumers to access the

goods and services of other firms.1 In certain cases, market fragmentation across multiple platforms

may not be surprising nor warrant concern, particularly when platforms are sufficiently differenti-

ated.2 However, when there are strong network effects and externalities that favor agglomeration

on a single platform (Katz and Shapiro, 1985), the co-existence of multiple platforms may result in

socially inefficient replication of costs and investment, delayed adoption of new technology due to

uncertainty, and welfare losses due to restricted choice stemming from product incompatibility.3

Though the reason for multiplicity likely varies from industry to industry, potential explanations

include coordination failure (c.f. Farrell and Klemperer (2007) for a survey); congestion effects

(Ellison and Fudenberg (2003); Ellison, Fudenberg, and Möbius (2004)); and the ability for agents

to join multiple platforms or “multi-home”. To some extent, these analyses are incomplete as they

are frequently predicated on one or both of the following assumptions: (i) agents are atomistic price

takers who cannot individually influence market outcomes; and (ii) platforms are non-strategic,

acting merely as options for others to choose among. Yet, in many prominent platform markets,

neither of these assumptions hold. First, some agents in the market are oligopolistic, strategic, and

can individually influence profits and shares of all others; second, since a platform’s success will rely

on its ability to initially attract these agents to join, they act strategically and actively by offering

contracts and other incentive schemes. In these settings, it is no longer clear that the same forces

previously identified in the literature lead to the existence of a single platform (“market-tipping”)

or multiple platforms (“market-splitting”).

In an attempt to shed light on this issue, this paper explicitly focuses on the underlying con-

tracting game between platforms and an oligopolistic set of agents, and emphasizes how features

of this particular form of competition alone can dictate whether or not a market will tip or sustain

multiple platforms. I focus on a setting where agents are symmetric and can only join a single plat-

form (which may be reasonable for markets where the costs of multi-homing are large, such as the

adoption of a particular standard or technology, or decision to franchise for a particular brand), and

show that even without coordination failure, congestion, or multi-homing, outcomes that are worse

for the contracting parties (e.g., multiplicity instead of agglomeration, or vice versa) may persist

in equilibria simply as an outcome of platform competition and contracting with externalities.4

1E.g., hardware-software markets (computer operating systems, videogame consoles), retail marketplaces (shop-
ping centers, auction sites, franchises), content delivery systems (television, online music), and healthcare (managed
care organizations).

2Heterogeneous consumers may prefer different vertical (price, quality) characteristics or horizontal (location) at-
tributes. Also, platforms may choose to subsidize different sides of a multi-sided market as in Ambrus and Argenziano
(2008).

3C.f. Farrell and Saloner (1985); empirical work documenting welfare losses due to incompatibility across platforms
include Ohashi (2003) on VCRs; Rysman (2004) on yellow pages; Ho (2006) on insurer-hospital networks; Ishii (2005)
and Knittel and Stango (2011) on ATM networks; and Lee (2012) in hardware-software markets.

4Though a complete analysis allowing for multihoming and asymmetric firms is beyond the scope of our paper,
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This paper examines a two-stage bilateral contracting game: platform providers first make offers

to a set of oligopolistic agents—which we will refer to as “firms”—that specify the payment made to

(or demanded of) each firm conditional on that firm joining the platform; firms then simultaneously

choose which platform to affiliate with. I focus on the strategic game played between only these two

sets of players—the platforms and firms—even if there may exist other sets of players in the market.

For tractability, I assume the eventual market structure and expected payoffs to all parties are

determined solely by the contracting decisions of the oligopolistic set of agents.5 These “partition”

or “value” functions—payoffs to agents conditional on the realized network structure—are allowed

to be quite general, and will be assumed to be primitives of the analysis.

Since payoffs to any platform or firm will depend on the actions of all agents, the setting analyzed

is a multilateral contracting environment with externalities; as such, previous analyses of bilateral

contracting games are not directly applicable.6 I focus on an environment with only two platforms

and assume all firms are symmetric and must choose a single platform to join; secondly, I impose

the solution concept of Coalition-Proof Nash Equilibrium (CPNE) introduced by Bernheim, Peleg,

and Whinston (1987), which avoids coordination problems among firms as well as selects a unique

equilibrium outcome for any subgame following the first stage. The setup also avoids employing

undesirable restrictions on the beliefs of firms following a deviation by a platform, such as imposing

“passive-beliefs” (Hart and Tirole, 1990; McAfee and Schwartz, 1994).

I then analyze two separate cases: first, when platforms are able to offer contingent contracts,

whereby transfers between platforms and firms depend on the number of firms that join each

platform; and secondly, when platforms can only contract on whether or not a firm joins. In the

first case, the efficient outcome—defined in our setting to be the outcome which maximizes total

surplus among the contracting parties—need not be sustainable as an equilibrium outcome as the

inability for platforms to offer side payments to each other can lead to “excessive” competition

for firms: e.g., there may be multiple market-splitting equilibria, even if the efficient outcome

dictates market-tipping (all firms joining a single platform). If, however, transfers cannot be made

contingent on the actions of other firms as in the second case, then market-tipping is more likely to

be the only equilibrium outcome. I show that this also applies when there is a continuum of firms.

This result may not be surprising, as it can be seen as a direct parallel of Segal (1999) to

the setting with multiple “principals” (platforms): an inefficient outcome from the perspective of

contracting parties may arise when there are externalities imposed by a contract on those not in-

insights from this paper still apply to these richer environments. E.g., Lee and Fong (2012) study a model of
network formation and bargaining in more general networked industries where asymmetric agents can have multiple
contracting partners, and find inefficient outcomes can persist.

5If there are only firms and platforms in the market, this assumption is not restrictive. In other settings when there
are other agents that act after platforms and firms have contracted, I assume there is a unique subgame equilibrium
following the contracting stage. I discuss this assumption further in the next section.

6Many of these papers have analyzed a non-cooperative setting where one set of players (principals) typically make
take-it-or-leave-it contract offers to the other set of players (agents) in order to induce them to take certain actions.
The seminal paper by Bernheim and Whinston (1986) analyzed common agency, with many principals attempting
to influence the action of a single agent via transfers; Segal (1999) and Segal and Whinston (2003) studied the case
with one principal and many agents; and Prat and Rustichini (2003) explored the case with multiple principals and
multiple agents, but did not allow for agents to exert externalities on other agents.
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volved. However, what is new to this paper is the result that if efficiency dictates tipping, allowing

for contingent contracts may actually lead to market-splitting equilibria whereas prohibiting them

may lead to tipping—i.e., expanding the contracting space results in a worse outcome. Key to this

result is that (i) transfers between players on the same side (here, between the two platforms or

between the firms) and (ii) transfers between firms and platforms that do not contract are often

prohibited. Such forced market segmentation, often imposed in these bilateral contracting environ-

ments for antitrust or other institutional reasons, prevent the realization of efficient outcomes for

the contracting partners.7

This result echoes findings in recent empirical work: e.g., Lee (2012) has shown that the pres-

ence of exclusive contingent-contracts in a hardware-software market encouraged the existence of

multiple platforms, and banning these types of contracts may have led to a monopolist platform

provider. Furthermore, there is evidence that exclusive deals may have aided platform entry in

certain media markets,8 or encouraged and enabled certain standards battles.9 However, though

the outcomes may have been inefficient from the perspective of the contracting parties (i.e., reduced

industry surplus due to cost replication, delayed adoption, and competition), they may not have

been socially inefficient, as consumers may have benefits from lower prices and increased product

variety arising from platform competition.

Although the two-sided markets literature analyzes platform markets (e.g., Armstrong (2006);

Caillaud and Jullien (2003); Rochet and Tirole (2003, 2006)), the focus has mainly been on platform

pricing, and in settings where only platforms act strategically and other sides of the market are

price-takers. Insofar that some of these papers analyze competing platforms, they do so taking the

existence of multiple platforms as given. This paper, on the other hand, attempts to endogenize

their existence by modeling this competition for a small number of strategic firms on one side who

interact with the platform providers. As a result, it is more similar to the bilateral contracting lit-

erature mentioned above and papers on endogenous network formation (e.g., Jackson and Wolinsky

(1996); Bloch and Jackson (2007); Kranton and Minehart (2000, 2001)).

The paper concludes by applying the model to an example of marketplace competition, where

two competing marketplaces compete for N differentiated product retailers to join their respective

sites. Consistent with intuition and previous analysis, the model predicts that strong platform

differentiation, weak network effects, or decreasing returns from additional contracting partners

makes it less likely for complete market-tipping to be an equilibrium.

7Bloch and Jackson (2007) discuss how allowing for these kinds of general transfers restores efficiency in a related
network formation game.

8E.g., DirecTV’s success in television distribution against cable is often partially attributed to its ability to engage
in exclusive deals with content providers.

9E.g., the recent battle between next-gen DVD formats Blu-ray and HD-DVD was partially spurred on by Sony’s
exclusive relationship with movie studio Columbia Pictures, and Toshiba’s exclusive deal with Paramount.
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2 Model

2.1 Setup and Timing

Consider a market with two platforms, A and B, and N symmetric firms in a multi-stage game. I

assume firms must affiliate with one platform, and cannot join multiple platforms. The timing of

the game is as follows:

(1) In the first stage, each platform i simultaneously offers a transfer schedule ti. If firms can

offer contingent transfers, then ti : {1, ..., N} → R is a function which indicates the payment

made by platform i to each firm who joins i, given the number of firms who join platform

A. For example, if x firms join platform A, platform A pays each of the x firms the amount

tA(x), whereas platform B pays of the N − x firms that join it the amount tB(x). If firms

cannot offer contingent transfers, then ti ∈ R is a single payment specifying what platform i

will pay any firm in exchange for affiliation.

(2) In the second stage, each firm simultaneously chooses which platform to join. Let ηi denote the

number of firms that join platform i—i.e., if x firms join platform A, ηA = x and ηB = N −x.

(3) Payoffs to all agents are realized: each platform i receives Gi(x) ≡ Vi(x) − ηiti(x), and each

firm that joins platform i receives Fi(x) ≡ Ui(x) + ti(x). Vi and Ui are assumed to be real

valued functions.

One key assumption in our analysis is that these payoff functions can be expressed solely as

functions of the actions taken in the first two stages of the game: the transfer schedules {tA(·), tB(·)}
and the number of firms that join each platform {ηA, ηB}. In certain markets (e.g., “one-sided”

networks like technology standards), firms and platforms are the only relevant agents, and this

assumption is without loss of generality. However, in other markets (e.g., “multi-sided” markets),

there may be others agents (e.g., consumers) whose actions influence payoffs as well. In these more

general settings, I assume firms act first (as in Hagiu (2006)), and there is a unique equilibrium or

fixed equilibrium selection rule for any subsequent subgame following firms’ contracting decisions.

This is a strong assumption in that it rules out potential coordination failures among other agents,

and is made to primarily focus on contracting issues between oligopolistic firms and platforms.

Nonetheless, there are multi-sided market settings in which this assumption holds. For example,

consider settings in which after firms contract with platforms in stage 2, there are two additional

substages prior to payoffs being realized in stage (3): (2a) firms engage in price competition for

(an atomless set of) consumers, and (2b) consumers then choose which platforms to join. If there

are only indirect network effects for consumers when making their adoption decisions (so that

consumers care only about prices and the set of firms on each platform, and not the number of

consumers on each platform), then there is no coordination problem among consumers in (2b)

and there is a unique allocation of consumers across platforms given prices and firm contracting

decisions. Consequently, as long as there is then a unique equilibrium of the price setting subgame
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among firms and platforms in stage (2a), final payoffs to firms and platforms in (3) can be specified

as a function of firm contracting decisions alone. This timing and setup has frequently been used to

study platform markets in applied work.10 I also provide an example in Section 4 where Vi and Ui,

generated via a pricing subgame among firms and a CES consumer demand system, are functions

solely of the number of firms that join each platform.

For now, I take Vi and Ui as primitives for the analysis and allow them to be as general as

possible, subject only to the following two assumptions.

Assumption 2.1 (Positive Surplus). Vi(x) + ηiUi(x) ≥ 0 ∀ i ∈ {A,B}, x ∈ {1, ..., N}.

Since all firms must join a platform, I will assume that the total surplus generated between

firms and platforms is always positive, no matter how many or how few firms join a given platform.

Notice that this assumption says nothing about the signs of Vi or Ui, and it says nothing about the

division of surplus. In general, one may expect VA (or VB) to be increasing in x (or N−x)—as more

firms are on a platform, there is greater demand for that platform, and Vi may be a monotonic

function of demand. Ui however need not be strictly increasing nor decreasing. As a firm who

is currently on a particular platform i, there are often two competing effects when another firm

joins the same platform: an inter-platform effect which is positive, since an additional firm on the

same platform makes that platform more attractive to consumers, thereby increasing demand and

profits for all firms affiliated; and an intra-platform effect which is negative, resulting from increased

competition within the platform due to the additional firm.

Assumption 2.2 (Zero Surplus without Firms). VA(0) = VB(N) = 0.

This normalizing assumption is made for expositional purposes only, and indicates that plat-

forms receive 0 profits if no firms join.

Finally, let xe denote the outcome which maximizes the sum of platform and firm profits:

xe ∈ arg max
x∈{0,...,N}

VA(x) + xUA(x) + VB(x) + (N − x)UB(x) . (2.1)

Though not necessary for the analysis, I will assume that xe is unique for expositional clarity (which

will generally be the case if platforms are asymmetric). If firms and platforms are the only relevant

agents, it will coincide with the welfare maximizing outcome; otherwise, one needs to completely

specify utilities for other players in the market (e.g,. consumers) and how any other subgames are

structured in order to specify the socially efficient outcome. The precise conditions under which

productive and social efficiency coincide or diverge will be dependent on the underlying primitives

10Examples include insurance companies contracting with hospitals (Ho, 2009; Lee and Fong, 2012), cable televi-
sion operators contracting with channels (Crawford and Yurukoglu, 2012), and videogame consoles contracting with
software providers (Lee, 2012); these as well as many other papers model the firms onboard a platform as character-
istics of that platform, and uses a multinomial logit demand system to model consumer demand for each platform.
Logit demand systems also admit a unique pricing equilibrium in (2a) under duopoly (as assumed in this paper; c.f.
Anderson and de Palma (1988)) and other settings (c.f. Caplin and Nalebuff (1991); Vives (1999); Allon, Federgruen,
and Pierson (2011)).
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and institutional details of the particular market being analyzed. For the rest of this paper, I will

refer to xe as the efficient outcome even though it will be efficient only from the perspective of the

contracting parties.

2.2 Equilibrium

Let T ≡ TA× TB denote the set of allowable transfer schedules for the platforms. If firms can only

offer a contract to firms specifying payment for affiliation (i.e., non-contingent contracts), then

Ti ≡ R; otherwise, with contingent contracts which specify the amount to be paid to each firm

given the number of firms that join, Ti ≡ RN .11

An appropriate solution concept is required to analyze the first two stages of this game. Though

using Nash Equilibrium might seem reasonable, it is problematic for several reasons. First, in games

with network externalities, using Nash Equilibrium often results in a multiplicity of equilibria.

Additionally, it allows outcomes which are “unstable” in the following sense: platform choice is

rarely a permanent decision by firms as there is usually substantial movement and adjustment

after firms make their initial choices; considering only the possibility of unilateral deviations rules

out coalitional deviations as well as sequential changes, both of which are real possibilities. For

example, one might not expect to see a Pareto-dominated Nash Equilibrium outcome in the second

stage. Using a concept such as Strong Nash Equilibria (Aumann, 1959) that rejects any equilibria

that is not coalitionally stable might be ideal and does address these concerns; however, it is too

strong of a restriction for analysis: for certain sets of transfers, there will not exist any Strong Nash

Equilibrium in the second stage.

Instead, I will use the solution concept of Coalition-Proof Nash Equilibrium (CPNE) (Bernheim,

Peleg, and Whinston, 1987) to refine the set of possible outcomes in the second stage. It is weaker

than the notion of Strong Nash Equilibrium in that CPNE only considers coalitional deviations that

are not subject to further deviations, as opposed to all possible coalitional deviations. Importantly,

however, it admits a unique equilibrium prediction for the second stage of the game given the

following technical assumption.

Assumption 2.3 (No Indifference). Assume firms are never indifferent between affiliating with

platform A or B, and break ties in a manner consistent with their symmetric preferences. Specifi-

cally, if FA(x′) = FB(x′′) for some x′, x′′, without loss of generality I will assume that firms prefer

to be on platform A if x′ firms join A than on platform B if N − x′′ firms join B.

This assumption implicitly defines a true preference ordering over choices between platforms

for each firm—that is, firms’ preferences are given by the function �, where A(x′) � B(x′′) iff

11Note there are no restrictions on the range of transfers: if platforms are not budget constrained and can credibly
make large offers, no upper-limit on transfers is not problematic. In Appendix B, I explore imposing a feasibility
constraint on transfers. Also, note that platforms may demand a transfer such that firms receive a negative payoff in
equilibrium (since firms do not have the option of not joining a platform). Although for analytical tractability I do not
explicitly handle a firm’s individual rationality (IR) constraint and assume that firms have no choice but to affiliate
with some platform, it will be the case that equilibrium transfers will only depend on the relative differences between
firm utilities; thus, as long as Ui is sufficiently positive, every firm will receive non-negative payoffs in equilibrium.
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FA(x′) ≥ FB(x′′) and A(x′) ≺ B(x′′) otherwise. As the following proposition proves, the assumption

is necessary only to ensure existence of a unique CPNE in all subgames, and only applies for a

non-measurable subset of possible transfer schedules.12

Proposition 2.1. For every {tA, tB} ∈ T , there exists a unique pure-strategy CPNE x̂(tA, tB) in

the second stage, whereby x̂ firms join platform A and N − x̂ firms join platform B.

All proofs are located in the appendix.

In the first stage, I will utilize Nash Equilibrium to determine the transfers made by platforms.

It is reasonable to assume that once platforms make their offers, any subsequent changes to their

schedules are impossible (or prohibitively costly); furthermore, since there are only 2 platforms,

explicit coordination would be unlikely due to possible legal or institutional restrictions.13

Finally, I choose to focus only on pure-strategy equilibria. A pure strategy for a platform i is

simply an element of Ti, and a pure strategy for a firm is sn : T → {A,B}. Thus, an equilibrium

of this game can be denoted by {t∗A, t∗B, x∗}, where:

• x∗ = x̂(t∗A, t
∗
B), as defined in Proposition 2.1,

• t∗i ∈ arg maxti∈Ti Gi(x̂(ti, t
∗
−i)) ∀ i ∈ {A,B}.

That is {t∗A, t∗B, x∗} is subgame-perfect equilibrium of the two-stage game where each platform i

optimizes over Ti holding the other platforms’ transfers fixed, anticipating correctly that firms will

play the unique CPNE x∗ = x̂(t∗A, t
∗
B).

3 Analysis

Before analyzing the model with transfers, it is useful to examine briefly the case if platforms were

passive and could not offer transfers. In this case, firms would choose a platform based solely on

their Ui(x) functions. By Proposition 2.1, there will be a unique CPNE in this case. Furthermore,

as the following lemma shows, usually that outcome will be complete market tipping if we believe

firms to prefer being on platforms with a greater number of other firms.

Lemma 3.1. If UA is strictly increasing, UB strictly decreasing, UA(N) > UB(0), and if platforms

are passive and cannot make transfers, then the unique equilibrium will have all N firms joining

platform A.

This result follows simply from noting that no other outcome would be a CPNE for the firms.

Thus, as long as the inter-platform benefits accrued to each firm outweigh the costs from intra-

platform competition, a single marketplace will emerge when platforms are passive.

12An alternative approach would be to admit only transfer schedules s.t. FA(x′) 6= FB(x′′) ∀ x′ and x′′ < x′.
13Utilizing CPNE in this particular 2 player stage game would correspond to selecting only Pareto undominated

Nash Equilibria, which may not be justified in this context.
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Firm 1

Firm 2
A B

A 11, 0 4, 6
B 4, 6 0, 7

Figure 1: A game whereby the efficient outcome of both firms joining platform A is not stable.
(Payoffs are for platforms, whereas actions are for firms).

3.1 Contingent Transfers

Market tipping. When is complete market tipping—i.e., all N firms joining one platform—a

possible equilibrium outcome when firms can offer contingent transfers? The following proposition

provides a necessary and sufficient condition: the per-firm surplus on the dominant platform is

greater than the surplus generated by one firm deviating to the other platform.

Proposition 3.2.
1

N
VA(N) + UA(N) ≥ UB(N − 1) + VB(N − 1) (3.1)

is a necessary and sufficient condition for there to be an equilibrium where all N firms join platform

A.

Even if xe = N , the efficient outcome of all firms joining platform A need not even be a stable

equilibrium outcome: what matters, from equation (3.1), is that B and just one firm cannot earn

more than the surplus created from the Nth firm joining A. In other words, complete market

tipping can only occur if a platform and the Nth firm joining that platform gain more than the

surplus obtained when a single firm joins the other platform. Since A cannot offer more than

VA(N)/N to each firm that joins its platform or else it would earn negative profits, as long as B

can profitably steal away one firm, the complete market-tipping outcome is not an equilibrium.

This can be illustrated simply in the following example:

Example 3.1. Consider a game with 2 symmetric firms, where firms receive no base utility (Ui(·) =

0). Payoffs to the platforms Vi(·) are given in figure 1.14Note that the efficient outcome would be

xe = 2, whereby both firms choose to join platform A. But by proposition 3.2, VA(x)/2 = 5.5 �
VB(1) = 6, and thus this cannot be an equilibrium outcome. In other words, A can offer each firm

at most tA(2) = 5.5 in order to induce them to both join; however, B would offer tB(1) > 5.5 since

this would be profitable to do so—i.e., it could steal away a firm and get positive profits. Also, note

that x = 0 whereby both firms join B is not an equilibrium either.

This competition between platforms to get firms on board and their ability to offer transfers

leads to different implications than straight location choice models on the part of firms (i.e., passive

platforms); furthermore, it shows how bilateral contracting in the presence of externalities—even

when allowing for contingent transfers—can fail to achieve efficient outcomes. Key to this result

14The payoffs can be explained by the following story: A is better at exploiting complementarities across multiple
firms, whereas B is a platform that performs almost as well with just one firm than with two.
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is that transfers between the two platforms or between the firms, and transfers between firms and

platforms that do not contract, are prohibited. If xe = N and platform A could make a payment to

platform B contingent on all N firms joining A, then N would obtain as an equilibrium outcome.

However, such transfers are often not allowed in these platform contexts for legal or institutional

reasons.

Consider markets where consumers join platforms to access the goods and services of firms who

have already joined a platform. In such markets, a platform’s profits can often be represented as

an increasing function of consumer demand for that platform, either deriving from either a price

charged directly to consumers for access or utilization, or through advertising. Then circumstances

which would make market tipping less likely would include the presence of large firms whom unilat-

erally could induce sufficient numbers of consumers to join their platform, regardless of the actions

of other firms—examples include “hit” software or content joining certain hardware or content

distribution platforms, or even “star” hospitals choosing a particular insurance plan. Furthermore,

as platforms are more differentiated (from the perspective of consumers or other adopters), the

condition for market tipping in (3.1) is also less likely to hold: platform B might still be attractive

to enough consumers (with just one firm) to ensure VB(N − 1) is sufficiently high.

Market splitting. The next proposition provides condition under which a market-splitting or

interior equilibria can occur.

Proposition 3.3. There exists an interior equilibrium x∗ ∈ {1, . . . , N − 1} if and only if the

solution (t∗A(x∗), t∗B(x∗)) to15

t∗A(x∗) =
1

x∗
[VA(x∗)− VA(x∗ + 1)

+(x∗ + 1)(UB(x∗)− UA(x∗ + 1) + t∗B(x∗))] , (3.2)

t∗B(x∗) =
1

N − x∗
[VB(x∗)− VB(x∗ − 1)

+(N − x∗ + 1)(UA(x∗)− UB(x∗ − 1) + t∗A(x∗))] . (3.3)

satisfies the following two inequalities:

VA(x∗)− x∗tA(x∗) ≥ 0 , (3.4)

VB(x∗)− (N − x∗)tB(x∗) ≥ 0 . (3.5)

Equations (3.2) and (3.3) are (IC) constraints on the platforms, which ensure that transfers each

platform offers are high enough so that the other platform is not induced into deviating, whereas

15The solution to (3.2) and (3.3) is

t∗A(x∗) =
1

N + 1
[VA(x + 1)− VA(x)− (N − x)(x + 1)(UB(x)− UA(x + 1))

+ VB(x− 1)− VB(x)− (N − x + 1)(UA(x)− UB(x− 1))]

with a similar expression for t∗B(x∗)
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(3.4) and (3.5) are (IR) constraints to ensure that platforms receive positive profits. The proposition

proves that these are necessary and sufficient conditions to construct an interior equilibrium that

results in outcome x∗.

This proposition proves that the existence of interior equilibrium depends only on these under-

lying primitives, and there may in fact be a “plateau” of potential interior equilibria that may be

induced. Note that in determining if an interior x∗ is an equilibrium, (3.2) and (3.3) only refer to:

• VA(x∗)−VA(x∗+1) and VB(x∗)−VB(x∗−1), the marginal contribution of an additional firm

to each platform;

• UA(x∗)−UB(x∗−1) and UB(x∗)−UA(x∗+ 1), the gain to a firm who switches from platform

A to B or from B to A.

Thus, the (IC) constraints consider only the differences and not absolute values of these primitives

(i.e., the potential gains to deviation from x∗ for each player). However, the two (IR) constraints

given by(3.4) and (3.5) depend only on the absolute levels of Vi(x
∗). Consequently, as long as the

absolute levels of Vi are sufficiently high compared to the relative gains from a single firm deviating,

it is feasible that all interior market outcomes could be equilibria. For comparison, recall that under

the conditions of Lemma 3.1, an interior equilibrium could not exist when platforms cannot offer

transfers. This is no longer the case here, and again this competition between platforms to get

firms on-board can induce equilibria that may not have been possible otherwise.

The greater the marginal contribution of a firm to a platform’s utility or the difference in utility

of a firm by switching platforms in relation to a platform’s absolute utility, the less chance that a

particular market splitting equilibrium x∗ ∈ {1, ..., N−1} can occur. This would occur as the impact

of a single firm’s decision either on platform profits or own profits increase, which would happen

if firms were few in number and/or each commanded significant demand share among consumers

(again, if platforms served as intermediaries between firms and consumers). On the other hand,

if platforms realized large profits initially from a few firms joining but those benefits fell as more

firms joined such that (Vi(x)− Vi(x− 1)) / (Vi(x)) is low for intermediate market splits, then many

possible interior outcomes are supportable in equilibrium.

3.2 Non-Contingent Transfers

If platforms are restricted to making non-contingent offers, they lose a means of controlling the

number of firms that join their own platform. Indeed, the market outcome will not depend on a

platform’s value function Vi as much as before; rather, only the firm’s value function Ui will be

crucial.

I analyze two different cases, each of which characterizes a wide class of Ui functions.

Assumption 3.1. (Network Effects): maxx(UA(x)) = N and maxx(UB(x)) = 0.

Assumption 3.1 may be extreme, as the firm optimal outcome may not involve all firms co-

ordinating on a single platform. Often, especially when firms compete for consumers or on other
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levels, there may be a “congestion” effect that reduces Ui(·) after a certain number of firms join a

given platform—i.e., the inter- versus intra- platform discussed earlier. In this case, I can assume

a fairly unrestrictive condition in that UB(·) is greater than UA(·) for low x, and UA(·) is greater

than UB(·) for higher x.

Assumption 3.2. (“Single Crossing”): There exists x̂ such that UA(x) < UB(x) ∀ x < x̂ and

UA(x) ≥ UB(x) ∀ x ≥ x̂.

If either of these conditions hold, then the following proposition shows that complete market

tipping must occur in any equilibrium.

Proposition 3.4. Assume A.3.1. Then there is no interior equilibrium, and there exists an equi-

librium where all N firms join platform A iff

1

N
VA(N) + UA(N) ≥ 1

N
VB(0) + UB(0) , (3.6)

else all firms joining B is an equilibrium.

Assume A.3.2. Then there is no interior equilibrium, and there exists an equilibrium where all

N firms join platform A iff

1

N
VA(N) + max

x
(UA(x)) ≥ 1

N
VB(0) + max

x′
(UB(x′)) . (3.7)

It is easy to construct examples which satisfy the conditions of Proposition 3.3 as well as either

A.3.1 or A.3.2. In these cases, Proposition 3.4 clearly emphasizes the importance of contingent

transfers in sustaining interior equilibrium. Again, note that efficiency may also be precluded here

as neither A.3.1 nor A.3.2 includes platform profits.

3.3 Continuum of Firms

The analysis in this paper is primarily meant to analyze platform competition for a finite number of

oligopolistic firms. As N grows large, the marginal contribution of an individual firm to platform

payoffs (Vi(N) − Vi(N − 1)) will typically decline; as noted before, this tends to support more

allocations (both interior and corner) as equilibria. I show here that this intuition carries over

when there is a continuum of firms.

Assume now there is a measure N of firms, where each firm is atomless. If measure x of firms

join platform A, let Fi(x) ≡ Ui(x) + ti(x) and Gi(x) ≡ Vi(x)− ηiti(x) be defined as before, where

ηi now represents the measure of firms joining platform i. The following proposition states that if

platforms are able to offer contingent transfers to each firm based on the measure of firms that join

each platform, all potential allocations are sustainable in equilibrium; however, with non-contingent

transfers, complete market tipping will occur under similar assumptions as before.

Proposition 3.5. If platforms are able to offer contingent transfers, any x ∈ [0, N ] joining platform

A can be sustained as an equilibrium. If platforms can offer only non-contingent transfers and either

12



A.3.1 or A.3.2 holds, there is no interior equilibrium and only complete market-tipping equilibria

exist.

4 Example: Marketplace

This section applies the model and results to a marketplace which must first attract merchants to

its site; the marketplace’s profits are dependent on advertising, which in turn is a function of the

number of consumers that visit.

I return to the setting with N oligopolistic firms. Each firm produces differentiated goods, and

needs to locate in either marketplace A and B in order to sell to consumers. These platforms are

located at the endpoints of the unit interval. There is an atomless mass of consumers of measure

1 evenly distributed along the interval, with each consumer’s location is given by a type θ ∈ [0, 1].

Consumers can only visit one market, where they spend $1 of their income. A consumer of type θ

who visits market A receives utility

uA(θ) = ūA + ωA(x)− τθ

where ūA is the base utility from visiting platform A, ωA(x) is the utility from shopping at mar-

ketplace A given there are x firms located there, and τ is the travel cost to the marketplace.

Similarly,

uB(θ) = ūB + ωB(x)− τ(1− θ)

Assume ūA = ūB, and they are both high enough such that the entire segment is always served for

all x. Thus total demand for each market place will be

DA(x) =
ωA(x)− ωB(x)

2τ
+

1

2
DB(x) =

ωB(x)− ωA(x)

2τ
+

1

2

Marketplaces do not charge consumers for visiting, but may gain revenues from advertising or

incur costs from serving consumers, both of which will be proportional to demand. Let Vi(x) =

γ(Di(x))Di(x) for platform i, where γi(D
i(x)) > 0 represents the per-customer rate that platform

i receives from advertising revenues.

For expositional and analytical simplicity, assume that firms set prices after consumers visit

markets, thereby separating pricing decisions from marketplace demand effects.16 Thus, first firms

choose which marketplaces to join, then consumers visit a marketplace, and then firms set prices

for their goods.

Consumers have CES preferences over goods offered in a marketplace; their utility for visiting

A is given by ωA(x) = (
∑

j∈A(qj)
ρ)1/ρ −

∑
j∈A qjpj whereby the number of firms in marketplace A

is given by x, qj is the quantity of good j consumed by an agent, pj is the price charged by firm

j, and ρ ∈ (0, 1) is the degree of product differentiation. Each consumer who visits marketplace A

16None of the results in this example will change if pricing took place before consumers chose.
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will spend share qj(x) = (p
(−1)/(1−ρ)
j /(

∑
k∈A p

(−1)/(1−ρ)
k ) of her income on good j.

In a symmetric equilibrium when firms have marginal costs c per unit sold, firms in marketplace

A will charge p̂Ai (x) = (cx(2 − ρ) − c))/(x − 1) and the total quantity sold by each firm will be

Q̂Ai (x) = (DA(x))/x. (In the case that x = 1 and there is only one firm in the marketplace, that

firm will charge p = $1 and capture all of a consumer’s surplus.) Thus

ωA(x) = (x(
1

xp̂Ai (x)
)ρ)

1
ρ − 1

The value functions for both firms and platforms contingent on x firms joining platform i can thus

be computed from the following equations: Ui(x) = p̂ij(x)Q̂ij(x) and Vi(x) = γ(Di(x))Di(x).

For a fixed c and γ, it is straightforward to show the following:

• Platform Differentiation: ∃τ such that for all τ ≥ τ , x = N cannot be an equilibrium;

for all τ < τ , x = N is sustainable. As transportation costs decrease, it is akin to the

marketplaces becoming less horizontally differentiated, which makes it easier to sustain a

market tipping equilibrium. The greater the transportation costs, the more likely it is that

certain consumers would be better served by a marketplace with a single firm nearby than

a marketplace with all the firms located at the opposite end of the space. Even a consumer

attending a market with just a single firm means that she would get 0 utility from purchasing

goods, she still derives utility ūi from visiting the marketplace. As τ increases, more and more

consumers would rather visit the single firm market, and by Proposition 3.3, this would mean

that a marketplace with just one firm derives enough surplus to prevent complete tipping.

• Network Effects For a fixed τ > 0, ∃ρ ∈ (0, 1) such that for all ρ < ρ, x = N is sustainable

in equilibrium. Lowering ρ is equivalent to increasing the returns in a consumer’s utility to

product differentiation; it also can be seen as the strength of cross market network effects—

consumers increasingly value having more firms located in the marketplace they visit. Thus,

as ρ falls, the LHS of equation (3.1) rises and the RHS falls, thereby allowing a single dominant

platform to be stable. Thus, as network effects are more influential in informing a consumer’s

choice, market tipping becomes more likely.

• Platform Saturation If γ is constant, it has no effect on whether or not an outcome is

an equilibrium since it does not affect the ratios (VA(x)− VA(x+ 1))/(VA(x)) and (VB(x)−
VB(x−1))/(VB(x)) for any x. However, if these ratios fall sharply (∂γ(Di(x))/∂x� 0), then

the marginal contribution of an additional firm to either platform falls; by Proposition 3.3,

this makes it more likely for market splitting equilibria to be stable.

5 Concluding Remarks

This paper has provided one approach for analyzing the competition between multiple platforms to

get an oligopolistic group of firms “onboard.” This contracting game and the associated restrictions
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on the contracting space (i.e., transfers between certain sets of agents are prohibited) can help

explain whether or not a market will tip or sustain multiple platforms, and has dramatic effects

on the efficiency of the equilibrium outcome as well as the division of surplus between players. In

these examples, it is clear how expanding the contracting space to include contingent contracts may

actually worsen efficiency, as they help sustain interior market-splitting equilibria when market-

tipping may be efficient.

As illustrated in the marketplace example from the previous section, the model provides pre-

dictions that are consistent with intuition: factors such as greater platform differentiation, firm

market power, weaker network effects, and contingent contracts contribute to the existence of mul-

tiple platform markets; again, these equilibria may be potentially inefficient.

I conclude with two final remarks. First, it is worth noting that in contexts where firms and

platforms are not the only players in the market, the pricing decision of a platform—which side

of the market to subsidize and which side of the market to charge—is a topic that has received

considerable attention when both sides of the market are non-strategic, but very little when one side

is oligopolistic. In the framework of this paper, prices that will be charged by both platforms and

firms influences the underlying primitives of the bilateral contracting game, and thus can be used,

e.g., as a means of committing players to a particular bargaining position. Secondly, although the

analysis has shed light on when a market may tip or sustain multiple platforms, it has done so by

taking the underlying profits realized by agents as given and restricting firms to only single-home.

Extensions along these dimensions remain the subject of future work.17

A Appendix: Proofs

Proof of Proposition 2.1. Recall Fi(x) = Ui(x) + ti(x) is the payoff to a firm for joining platform i
given x firms join platform A. Since Fi is real valued with a compact domain, let FA(·) attain its
maximum value at xmax

A and FB(·) attains its maximum value at xmax
B . If there are multiple points

at which Fi attains a maximum, let xmax
A be the greatest x and let xmax

B be the smallest x such
that the respective functions are maximized.

Assume for now that FA(xmax
A ) ≥ FB(xmax

B ). Note that any x′ < xmax
A cannot be an equilibrium:

if a coalition of xmax
A − x′ firms switch from platform B to platform A, they will receive FA(xmax

A )
which is strictly preferred to FB(x′) (even if FB(xmax

B ) = FA(xmax
A ) and xmax

B < xmax
A , by A2.3,

this preference relation still holds). This deviation is self-enforcing since no subcoalition of the
xmax
A − x′ firms will wish to deviate back to platform B, since FA(xmax

A ) is again strictly preferred
to FB(x′) ∀ x′ < xmax

A . Thus, any potential equilibrium x̂ ≥ xmax
A . Furthermore, any possible

deviation from x′ > xmax
A to an x′′ < xmax

A is not self-enforcing, since there is subcoalition that can
self-enforceably deviate back to xmax

A .
Using this logic, the proof proceeds by induction. Assume that at iteration n, the only range

of possible equilibria are contained within ∆n ≡ {xn, ..., xn} ⊂ ∆n−1, where FA(xn) is strictly
preferred to FB(x′) ∀ x′ ∈ {xn−1 +1, ..., xn−1−1} and FB(xn) is strictly preferred to FA(x′′) ∀ x′′ ∈

17For some examples of progress along these lines, Hagiu and Lee (2011) provide a model of bargaining between
two platforms and a single firm when the firm is allowed to multihome; Lee (2012) provides a structural model
to empirically estimate the underlying payoff functions for platforms and firms (conditional on the entire network
structure) where again firms may support multiple platforms; and Lee and Fong (2012) provides a model of contracting
and bargaining in general networked environments, where the number of agents on each side of a market is unrestricted.
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{xn−1 + 1, xn−1− 1}. Observe that if these conditions hold, any possible deviation from x ∈ ∆n to
x′ /∈ ∆n cannot be self-enforcing—there would be an m ≤ n and either an xm or xm such that a
self-enforcing subsequent deviation would exist. Let xmax,n

A be the maximum value of FA(·) attained
on ∆n (not including xn), and let xmax,n

B be the maximum value of FB(·) (not including xn). If
FA(xmax,n

A ) is preferred by firms to FB(xmax,n
B ), then let xn+1 = xmax,n

A and xn+1 = xn. Otherwise,
let xn+1 = xn and xn+1 = xmax,n

B . It is trivial to see that the conditions of the inductive argument
are satisfied by xn+1 and xn+1.

Because N is finite, this process ends in a finite number of steps, which occurs when xn = xn

for some terminal n. Denote this point x̂. By construction, x̂ will have no self-enforcing coalitional
deviations, and consequently be the unique CPNE of this second stage game. Allowing x1 = xmax

A

and x1 = N completes the proof.
If FA(xmax

A ) < FB(xmax
B ), then the proof follows as above except x1 = 0 and x1 = xmax

B .

Proof of Proposition 3.2. Before proving the proposition, I state the following lemma:

Lemma A.1. Given tB, A can induce any outcome x̃ > 0 only by offering:

tA(x̃) ≥ UB(x̃− 1) + tB(x̃− 1)− UA(x̃) (A.1)

tA(x̃− 1) ≥ max
x<x̃−1

UB(x) + tB(x)− UA(x̃− 1) (A.2)

tA(x) < UB(x̃− 1) + tB(x̃− 1)− UA(x) for all x > x̃ (A.3)

Furthermore, given tA, B can induce any outcome x̃ with a similarly defined set of transfers:

tB(x̃) > UA(x̃+ 1) + tA(x̃+ 1)− UB(x̃)

tB(x̃+ 1) > max
x>x̃+1

UA(x) + tA(x)− UB(x̃+ 1)

tB(x) < UA(x̃+ 1) + tA(x̃+ 1)− UB(x) for all x < x̃

The lemma is easy to prove. Take the first case, where tB is given. Note that if tA is as defined
in equations (A.1)–(A.3), x̃ is in fact a CPNE for the firms. A cannot set tA(x̃) any lower that
in (A.1) or else x̃ would not be stable and any single firm on A would wish to join B instead.
Furthermore, as long as tA(x̃− 1) is set as high as it is in (A.2), any coalitional deviation of firms
from A to B is not self-enforcing. Finally, by (A.3), no more firms would wish to join A than x̃
since then firms would rather prefer to be on B.

Now to prove the proposition: (⇒) For necessity, assume that equation (3.1) does not hold and
1
N VA(N) + UA(N) < UB(N − 1) + VB(N − 1), but there exists an equilibrium {t∗A, t∗B, x∗ = N}.
It must be that VA(N) −Nt∗A(N) ≥ 0, otherwise A would be receiving negative payoff and could
profitably deviate to receiving 0 by demanding sufficiently high transfers for all realizations of
x causing no one to join A. So t∗A(N) ≤ 1

N VA(N). However, this implies that B could offer
t′B(N − 1) = t∗A(N) + UA(N) − UB(N − 1) + ε (and demand sufficiently high transfers for other
network realizations), steal one firm away, and end up with positive (non-zero) payoffs since VB(N−
1)− t′B(N − 1) ≥ VB(N − 1) + UB(N − 1)− ( 1

N VA(N)− UA(N)) > 0. This means there could not
have been an equilibrium where all N firms joined A, and there is a contradiction.

(⇐) For sufficiency, the proof is constructive. Assume equation (3.1) holds.
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Let

t∗A(N) = UB(N − 1) + VB(N − 1)− UA(N) ,

t∗B(N) = 0 ,

t∗B(N − 1) = VB(N − 1) ,

t∗B(x) > max
x′<N−1

(
1

x′ + 1
(VA(x′ + 1)− VA(N)) +

N

x′ + 1
t∗A(N)− UB(x′) + UA(x′ + 1)) ,

∀ x < N − 1 ,

t∗A(N − 1) = max
x<N−1

UB(x) + t∗B(x) ,

t∗A(x) =
VB(x)

N − x+ 1
+ UB(x− 1)− UA(x) ∀ x < N − 1 .

Note that in this case, all firms will select A in a CPNE by virtue of the fact that t∗A(N − 1) is
set high enough to preclude any self-enforcing deviation from x∗ = N . A receives positive profits
(since VA(N) − Nt∗A(N) > 0 by equation (3.1) and A2.1), cannot reduce its transfers without
losing a firm to B (by construction of VB(N − 1)), and cannot induce another outcome x and do
better (which follows from the construction of tB(x) and lemma A.1). Finally, B cannot change
its transfers in order to get any firms to join without incurring negative payoffs since it must offer
enough to overcome transfers tA(x). Thus, I have constructed an equilibrium where the outcome
is N .

Proof of Proposition 3.3. Proving necessity is straightforward: t∗A(x∗) needs to be as large as the
value on the RHS of equation (3.2), or else platform B could profitably deviate and induce outcome
x∗ − 1 by offering a transfer schedule as described in lemma A.1. Similarly, t∗B(x∗) needs to be as
large as the RHS of equation (3.3), or else platform A could profitably deviate by inducing outcome
x∗ + 1. However, if either equation (3.4) and (3.5) did not hold, then a platform would be earning
negative profits and would do strictly better by not having anyone join at all. So in order for there
to exist transfers that induce x∗ in equilibrium, the conditions in the proposition must hold.

For sufficiency, construct transfers as follows: let t∗A(x∗) and t∗B(x∗) be as in equations (3.2) and
(3.3). Set

t∗A(x∗ + 1) = UB(x∗) + tB(x∗)− UA(x∗ + 1)− ε ,
t∗B(x∗ − 1) = UA(x∗) + tA(x∗)− UB(x∗ − 1) .

so that each platform cannot reduce their transfers offered for x∗ without causing firms to switch
their platform choice.

Let K = max{maxx VA(x),maxx VB(x)}. Define the remaining transfers as follows:

t∗A(x) =

{
max{K, 2K} − UA(x) if x < x∗

min{K, 2K} − UA(x) if x > x∗ + 1

t∗B(x) =

{
min{K, 2K} − UB(x) if x < x∗ − 1

max{K, 2K} − UB(x) if x > x∗

It is easy to show that given these transfers: (i) firms will choose x∗ in a CPNE; (ii) no platform
can reduce the amount paid for the outcome x∗; (iii) no platform can induce another outcome x̃ 6= x∗

and receive a higher payoff; (iv) platforms receive positive profits. Thus, given the conditions of
the proposition, there exists an equilibrium where x∗ firms join platform A.
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Proof of Proposition 3.4. With non-contingent offers, each platform can only make a single transfer
offer ti for affiliation. If A.3.1 holds, then it is straightforward to see that regardless of the values
of {tA, tB}, no interior equilibrium is a CPNE for the firms. Furthermore, tA = 1

N VB(0) +UB(0)−
UA(N) and tB = 1

N VB(0) comprise equilibrium transfers as long as equation 3.6 holds: A makes
positive profits, B does not find it profitable to increase its own transfers, and all firms choose to
join platform A.

If assumption 3.2 holds, then again it is straightforward to see that no interior equilibrium is
a CPNE for the firms, regardless of {tA, tB}: if arg maxi[maxx[Ui(x) + ti]] = A, then all firms will
join A; otherwise, all firms will join B. The necessity and sufficiency of equation 3.7 follows from
the same steps as the previous proofs.

Proof of Proposition 3.5. Contingent Transfers. Let K = max{maxx(VA(x)/x),maxx(VB(x)/x)}.
For any x∗ ∈ [0, N ], let:

t∗A(x∗) = UB(x∗) + tB(x∗)− UA(x∗) ,

t∗B(x∗) = UA(x∗) + tA(x∗)− UB(x∗) ,

t∗A(x) =

{
max{K, 2K} − UA(x) if x < x∗

min{K, 2K} − UA(x) if x > x∗
,

t∗B(x) =

{
min{K, 2K} − UB(x) if x < x∗

max{K, 2K} − UB(x) if x > x∗
.

Given these transfers, (i) no firm wishes to unilaterally deviate from x∗ (which, since they are
atomless, results in no change in allocation), and (ii) there is no self-enforcing deviation of any
firm coalition with positive measure. Finally, tA(x∗), tB(x∗) can be set low enough to ensure that
platforms both receive positive profits at x∗, and no platform can unilaterally receive higher payoffs
by offering different transfers. Thus, x∗ can be sustained in equilibrium.

Non-contingent Transfers. The proof and conditions are identical to Proposition 3.4, except
equilibrium transfers in the first case (under A.3.1 and (3.6)) are tA = VB(0) +UB(0)−UA(N) and
tB = VB(0).

B Feasible Transfers

In the analysis, platforms could only utilize symmetric, contingent transfers, and also could poten-
tially offer transfers for off-equilibrium realizations that would yield negative payoffs. This section
explores how restricting transfers to be “feasible” alters the analysis.

Definition B.1. A transfer schedule ti is feasible for platform i iff ηiti(x) ≤ Vi(x) ∀ x ∈ {1, ..., N}.

Feasibility implies that for any outcome x, a platform may not promise making total transfers
that would exceed Vi(x). The set of feasible transfers for platform A is given by:

T fA ≡ {0, (−∞, VA(1)), (−∞, VA(2)

2
), ..., (−∞, VA(N)

N
)}

(and defined similarly for T fB). This restriction is akin to (i) assuming platforms do not have access
to external financing and (ii) ensuring that all transfer promises are credible.

The issue with imposing feasible transfers is that it can simultaneously make it less and more
difficult to maintain a previous equilibrium outcome x:
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• for a given t−i, it may be impossible for platform i to induce any outcome x—platforms may
not be able to offer sufficiently high transfers in non-realized market structures, something
that was crucial in proving propositions 3.2 and 3.3. This may reduce the number of potential
deviations to consider for any platform i.

• At the same time, platforms may also be unable to counter other (feasible) deviations from
other platforms by not being able to offer its own (infeasible) off-equilibrium transfers.

As a consequence, analysis becomes more complicated and subject to particular functional
forms. What can be shown is that for a reasonable restriction on the primitives Vi and Ui, the
conditions for complete market tipping can be characterized.

Assumption B.1. Assume 1
xVA(x) and UA(x) are monotonically increasing in x, and 1

N−xVB(x)
and UB(x) are monotonically decreasing in x.

Proposition B.1. Given AB.1, x∗ = N is supportable in equilibrium iff

VA(N) +NUA(N) ≥ max
x<N

{
VA(x) +

N − x
N

VB(0) + (N − x)UB(0)

}
(B.1)

Proof of Proposition B.1. For necessity, assume that (B.1) does not hold. Note that if N is to be
an equilibrium, then it must be that

t∗A(N) + UA(N) = max
x<N
{ 1

N − x
VB(x) + UB(x)} ∀ x < N

=
1

N
VB(0) + UB(0) by AB.1 (B.2)

or else platform B could offer a transfer for some x < N that would cause (N − x) firms to join
B and give B positive profits, or A could lower its transfers paid out without losing any firms. At
the same time, it must be that

VA(N)−Nt∗A(N) ≥ VA(x̃)− x̃[max
x<x̃

UB(x) +
1

N − x
VB(x)] ∀ x̃ < N

≥ VA(x̃)− x̃[
1

N
VB(0) + UB(0)] ∀ x̃ < N (B.3)

or else platform A could changes its transfers to induce an outcome x̃ that would give it higher
profits. Substituting (B.2) into (B.3) for t∗A(N):

VA(N) +NUA(N) ≥ VA(x̃) +
N − x̃
N

VB(0) + (N − x̃)UB(0) ∀ x̃ < N

which is (B.1), and there is a contradiction.
For sufficiency, let

t∗B(x) =
1

N − x
VB(x) ∀ x < N

t∗A(N) =
1

N
VB(0) + UB(0)− UA(N)

t∗A(x) ≤ 1

x
VA(x) ∀ x < N
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It is easy to show that (B.1) allows t∗A(N) to be feasible, and that N will be an equilibrium: N
firms will join A in a CPNE, and neither A or B can change their transfers and be better off.

This condition is much stronger than that in Proposition 3.2—the RHS of equation (B.1) is
greater than (3.1) (from AB.1). Also, note the presence of VA(x) on the RHS of (B.1)—whereas
before B could make it too costly for A to consider inducing a different market outcome x < N , now
with feasible transfers this may not be possible; as a result it becomes more difficult for complete
market tipping to sustain since A now has a greater possibility of finding a profitable deviation.
Consequently, if market tipping is indeed efficient, then this restriction on the transfer space makes
it more difficult to achieve efficiency.
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